Search results for "Ionization energy"

showing 10 items of 83 documents

Study of the P3HT/PCBM interface using photoemission yield spectroscopy

2016

Photogeneration efficiency and charge carrier extraction from active layer are the parameters that determine the efficiency of organic photovoltaics (OPVs). Devices made of organic materials often consist of thin (up to 100nm) layers. At this thickness different interface effects become more pronounced. The electron affinity and ionization energy shift can affect the charge carrier transport across metal-organic interface which can affect the performance of the entire device. In the case of multilayer OPVs, energy level compatibility at the organic-organic interface is as important. Photoemission yield spectroscopy was used for organic-organic interface study by ionization energy measuremen…

010302 applied physicsMaterials scienceOrganic solar cellbusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesActive layerElectron affinityIonization0103 physical sciencesOptoelectronicsCharge carrierThin filmIonization energy0210 nano-technologybusinessSpectroscopySPIE Proceedings
researchProduct

Impact of the molecular structure of an indandione fragment containing azobenzene derivatives on the morphology and electrical properties of thin fil…

2016

Abstract The solution casting method is low-cost processing method. Moreover, it is possible to prepare amorphous thin films by using this method, and thus, both optical quality and electrical properties could be improved in compare to polycrystalline films made by thermal evaporation in vacuum. Therefore, low-molecular-weight compounds that form amorphous structure from solution could be promising in organic electronics. In this work film morphology, molecule energy levels, and charge carrier mobility in thin films of indandione fragment containing azobenzene derivatives were studied. Deep charge carrier trapping states that drastically influenced charge carrier mobility were observed for …

010302 applied physicsOrganic electronicsMaterials science02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesAmorphous solidchemistry.chemical_compoundAzobenzenechemistryElectron affinity0103 physical sciencesOrganic chemistryPhysical chemistryGeneral Materials ScienceCharge carrierCrystalliteThin filmIonization energy0210 nano-technologyMaterials Chemistry and Physics
researchProduct

Direct mass measurements and ionization potential measurements of the actinides

2019

Abstract The precise determination of atomic and nuclear properties such as masses, differential charge radii, nuclear spins, electromagnetic moments and the ionization potential of the actinides has been extended to the late actinides in recent years. In particular, laser spectroscopy and mass spectrometry have reached the region of heavy actinides that can only be produced only at accelerator facilities. The new results provide deeper insight into the impact of relativistic effects on the atomic structure and the evolution of nuclear shell effects around the deformed neutron shell closure at N = 152. All these experimental activities have also opened the door to extend such measurements t…

010308 nuclear & particles physicsChemistryNuclear TheoryTransactinide elementActinideSuperheavy ElementsMass spectrometry01 natural sciences0103 physical sciencesAtomic numberPhysical and Theoretical ChemistryIonization energyAtomic physicsNuclear Experiment010306 general physicsSpectroscopyTransuranium elementRadiochimica Acta
researchProduct

Semi-Empirical Calculations of Hole Polarons in MgO and KNbO3 Crystals

1998

The semi-empirical quantum chemical INDO method has been used for cluster and large unit cell calculations of hole polarons bound to a cation vacancy in highly ionic MgO and partly covalent perovskite KNbO 3 . In both cases a hole is well localized on an oxygen atom displaced towards the vacancy. The calculated optical and thermal ionization energies for V - and V 0 centers are in excellent agreement with experimental data for MgO. In KNbO 3 we predict the existence of one-site and two-site (molecular) polarons with close absorption energies (1 e V). The relevant experimental data are discussed.

Ab initio quantum chemistry methodsChemistryVacancy defectBound stateIonic bondingThermal ionizationIonization energyAtomic physicsCondensed Matter PhysicsPolaronElectronic Optical and Magnetic MaterialsPerovskite (structure)physica status solidi (b)
researchProduct

Thermochemical properties of small open-shell systems: experimental and high-levelab initioresults for NH2and

2006

The first adiabatic ionization energy and the first singlet–triplet splitting of the amidogen radical (NH2) have been determined by high-level ab initio quantum chemistry based on the coupled-cluster approach (90 041 and 10 319 cm−1, respectively) and by high-resolution pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy (90 083.8 ± 1.0 and 10 222.0 ± 1.3 cm−1, respectively). A comparison between the theoretical and experimental values demonstrates the predictive powers of high-level ab initio theory in the derivation of the thermochemical properties of small molecular systems. The absolute accuracy of better than 100 cm−1 alleviates the experimental search for…

AmidogenAbsolute accuracyBiophysicsAb initioCondensed Matter PhysicsQuantum chemistryMolecular physicschemistry.chemical_compoundX-ray photoelectron spectroscopychemistryPhysical and Theoretical ChemistryIonization energyAdiabatic processMolecular BiologyOpen shellMolecular Physics
researchProduct

Full configuration interaction calculation of singlet excited states of Be3

2004

The full configuration interaction (FCI) study of the singlets vertical spectrum of the neutral beryllium trimer has been performed using atomic natural orbitals [3s2p1d] basis set. The FCI triangular equilibrium structure of the ground state has been used to calculate the FCI vertical excitation energies up to 4.8 eV. The FCI vertical ionization potential for the same geometry and basis set amounts to 7.6292 eV. The FCI dipole and quadrupole transition moments from the ground state are reported as well. The FCI electric quadrupole moment of the X (3)A(1) (') ground state has been also calculated with the same basis set (Theta(zz)=-2.6461 a.u., Theta(xx)=Theta(yy)=-1/2Theta(zz)). Twelve of …

Atomic clustersElectron correlationsIonisation potentialGeneral Physics and AstronomyFull configuration interactionBeryllium ; Configuration interactions ; Excited states ; Orbital calculations ; Ground states ; Ionisation potential ; Molecular configurations ; Transition moments ; Quadrupole moments ; Molecular moments ; Electron correlations ; Atomic clustersPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Basis setElectronic correlationChemistryConfiguration interactionsExcited statesPhysics::Physics EducationMolecular configurationsTransition momentsUNESCO::FÍSICA::Química físicaOrbital calculationsGround statesDipoleExcited stateQuadrupoleQuadrupole momentsMolecular momentsBerylliumAtomic physicsIonization energyGround stateThe Journal of Chemical Physics
researchProduct

Equation-of-motion coupled-cluster methods for ionized states with an approximate treatment of triple excitations.

2005

The accuracy of geometries and harmonic vibrational frequencies is evaluated for two equation-of-motion ionization potential coupled-cluster methods including CC3 and CCSDT-3 triples corrections. The first two Sigma states and first Pi state of the N2 +, CO+, CN, and BO diatomic radicals are studied. The calculations show a tendency for the CC3 variant to overestimate the bond lengths and to underestimate the vibrational frequencies, while the CCSDT-3 variant seems to be more reliable. It is also demonstrated that the accuracy of such methods is comparable to sophisticated traditional multireference approaches and the full configuration interaction method.

Bond lengthCoupled clusterChemistryIonizationHarmonicGeneral Physics and AstronomyEquations of motionPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsIonization energyFull configuration interactionDiatomic moleculeThe Journal of chemical physics
researchProduct

Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy

1997

Abstract Resonance ionization mass spectroscopy (RIMS) in the presence of an external static electric field has been used for the determination of photoionization thresholds. Extrapolation of the thresholds obtained with different electric field strengths to zero field strength directly leads to the first ionization potential (IP). The ionization potentials of the transplutonium elements americium, curium, berkelium and californium could be measured for the first time. Due to the high sensitivity of RIMS, samples of only 1012 atoms have been used. The results are: IPAm = 5.9738(2)eV, IPCm = 5.9915(2)eV, IPBk = 6.1979(2)eV and IPCf = 6.2817(2)eV. The same technique was applied to thorium, ne…

Chemical ionizationChemistrychemistry.chemical_elementThermal ionizationPhotoionizationMolar ionization energies of the elementsMass spectrometryAtomic and Molecular Physics and OpticsAnalytical ChemistryBerkeliumIonizationIonization energyAtomic physicsInstrumentationSpectroscopySpectrochimica Acta Part B: Atomic Spectroscopy
researchProduct

A Comparative Analysis of the Electrophilicity of Organic Molecules between the Computed IPs and EAs and the HOMO and LUMO energies

2007

[EN] The electrophilicity index, omega, of a series of substituted ethylenes used in some relevant organic reactions has been evaluated from the ionization potential JP) and the electron affinity (EA) computed by vertical ionization at the B3LYP/aug-cc-PVTZ level. The corresponding electrophilicity values are well correlated with those obtained from the HOMO and LUMO energies of the neutral molecules. The good linear correlation found between omega(I,A) and omega(H,L)(LBS), and between omega(H,L)(LBS) and omega(H,L)(SBS) allows to confirm the use of the easily available B3LYP/6-31G(*) HOMO and LUMO energies to obtain reasonable values of the global electrophilicity index of organic molecule…

ChemistryBasis-SetsReactivityGeneral Physics and AstronomyScalesOrganic reactionDensity-Functional TheoryComputational chemistryHardnessIonizationElectron affinityElectrophileComputationMoleculeElectron-AffinitiesDensity functional theoryQuantitative characterizationPhysical and Theoretical ChemistryIonization energyHOMO/LUMO
researchProduct

A semi-empirical extrapolation technique for atomic and molecular properties derived from correlated wavefunctions

1976

Abstract A semi-empirical extrapolation technique is suggested for recovering the correlation defect remaining in atomic and molecular properties calculated from highly correlated wavefunctions. These procedures are applied to PNO-CEPA and PNO-IPPA calculations on F, F + , F − , and HF in order to obtain “exact” estimates of the ionization potential, electron affinity, and dissociation energy.

ChemistryElectron affinityExtrapolationGeneral Physics and AstronomyPhysical and Theoretical ChemistryAtomic physicsIonization energyWave functionBond-dissociation energyChemical Physics Letters
researchProduct