Search results for "Ionization energy"
showing 10 items of 83 documents
Study of the P3HT/PCBM interface using photoemission yield spectroscopy
2016
Photogeneration efficiency and charge carrier extraction from active layer are the parameters that determine the efficiency of organic photovoltaics (OPVs). Devices made of organic materials often consist of thin (up to 100nm) layers. At this thickness different interface effects become more pronounced. The electron affinity and ionization energy shift can affect the charge carrier transport across metal-organic interface which can affect the performance of the entire device. In the case of multilayer OPVs, energy level compatibility at the organic-organic interface is as important. Photoemission yield spectroscopy was used for organic-organic interface study by ionization energy measuremen…
Impact of the molecular structure of an indandione fragment containing azobenzene derivatives on the morphology and electrical properties of thin fil…
2016
Abstract The solution casting method is low-cost processing method. Moreover, it is possible to prepare amorphous thin films by using this method, and thus, both optical quality and electrical properties could be improved in compare to polycrystalline films made by thermal evaporation in vacuum. Therefore, low-molecular-weight compounds that form amorphous structure from solution could be promising in organic electronics. In this work film morphology, molecule energy levels, and charge carrier mobility in thin films of indandione fragment containing azobenzene derivatives were studied. Deep charge carrier trapping states that drastically influenced charge carrier mobility were observed for …
Direct mass measurements and ionization potential measurements of the actinides
2019
Abstract The precise determination of atomic and nuclear properties such as masses, differential charge radii, nuclear spins, electromagnetic moments and the ionization potential of the actinides has been extended to the late actinides in recent years. In particular, laser spectroscopy and mass spectrometry have reached the region of heavy actinides that can only be produced only at accelerator facilities. The new results provide deeper insight into the impact of relativistic effects on the atomic structure and the evolution of nuclear shell effects around the deformed neutron shell closure at N = 152. All these experimental activities have also opened the door to extend such measurements t…
Semi-Empirical Calculations of Hole Polarons in MgO and KNbO3 Crystals
1998
The semi-empirical quantum chemical INDO method has been used for cluster and large unit cell calculations of hole polarons bound to a cation vacancy in highly ionic MgO and partly covalent perovskite KNbO 3 . In both cases a hole is well localized on an oxygen atom displaced towards the vacancy. The calculated optical and thermal ionization energies for V - and V 0 centers are in excellent agreement with experimental data for MgO. In KNbO 3 we predict the existence of one-site and two-site (molecular) polarons with close absorption energies (1 e V). The relevant experimental data are discussed.
Thermochemical properties of small open-shell systems: experimental and high-levelab initioresults for NH2and
2006
The first adiabatic ionization energy and the first singlet–triplet splitting of the amidogen radical (NH2) have been determined by high-level ab initio quantum chemistry based on the coupled-cluster approach (90 041 and 10 319 cm−1, respectively) and by high-resolution pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy (90 083.8 ± 1.0 and 10 222.0 ± 1.3 cm−1, respectively). A comparison between the theoretical and experimental values demonstrates the predictive powers of high-level ab initio theory in the derivation of the thermochemical properties of small molecular systems. The absolute accuracy of better than 100 cm−1 alleviates the experimental search for…
Full configuration interaction calculation of singlet excited states of Be3
2004
The full configuration interaction (FCI) study of the singlets vertical spectrum of the neutral beryllium trimer has been performed using atomic natural orbitals [3s2p1d] basis set. The FCI triangular equilibrium structure of the ground state has been used to calculate the FCI vertical excitation energies up to 4.8 eV. The FCI vertical ionization potential for the same geometry and basis set amounts to 7.6292 eV. The FCI dipole and quadrupole transition moments from the ground state are reported as well. The FCI electric quadrupole moment of the X (3)A(1) (') ground state has been also calculated with the same basis set (Theta(zz)=-2.6461 a.u., Theta(xx)=Theta(yy)=-1/2Theta(zz)). Twelve of …
Equation-of-motion coupled-cluster methods for ionized states with an approximate treatment of triple excitations.
2005
The accuracy of geometries and harmonic vibrational frequencies is evaluated for two equation-of-motion ionization potential coupled-cluster methods including CC3 and CCSDT-3 triples corrections. The first two Sigma states and first Pi state of the N2 +, CO+, CN, and BO diatomic radicals are studied. The calculations show a tendency for the CC3 variant to overestimate the bond lengths and to underestimate the vibrational frequencies, while the CCSDT-3 variant seems to be more reliable. It is also demonstrated that the accuracy of such methods is comparable to sophisticated traditional multireference approaches and the full configuration interaction method.
Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy
1997
Abstract Resonance ionization mass spectroscopy (RIMS) in the presence of an external static electric field has been used for the determination of photoionization thresholds. Extrapolation of the thresholds obtained with different electric field strengths to zero field strength directly leads to the first ionization potential (IP). The ionization potentials of the transplutonium elements americium, curium, berkelium and californium could be measured for the first time. Due to the high sensitivity of RIMS, samples of only 1012 atoms have been used. The results are: IPAm = 5.9738(2)eV, IPCm = 5.9915(2)eV, IPBk = 6.1979(2)eV and IPCf = 6.2817(2)eV. The same technique was applied to thorium, ne…
A Comparative Analysis of the Electrophilicity of Organic Molecules between the Computed IPs and EAs and the HOMO and LUMO energies
2007
[EN] The electrophilicity index, omega, of a series of substituted ethylenes used in some relevant organic reactions has been evaluated from the ionization potential JP) and the electron affinity (EA) computed by vertical ionization at the B3LYP/aug-cc-PVTZ level. The corresponding electrophilicity values are well correlated with those obtained from the HOMO and LUMO energies of the neutral molecules. The good linear correlation found between omega(I,A) and omega(H,L)(LBS), and between omega(H,L)(LBS) and omega(H,L)(SBS) allows to confirm the use of the easily available B3LYP/6-31G(*) HOMO and LUMO energies to obtain reasonable values of the global electrophilicity index of organic molecule…
A semi-empirical extrapolation technique for atomic and molecular properties derived from correlated wavefunctions
1976
Abstract A semi-empirical extrapolation technique is suggested for recovering the correlation defect remaining in atomic and molecular properties calculated from highly correlated wavefunctions. These procedures are applied to PNO-CEPA and PNO-IPPA calculations on F, F + , F − , and HF in order to obtain “exact” estimates of the ionization potential, electron affinity, and dissociation energy.